Air etalon facilitated simultaneous measurement of group refractive index and thickness using spectral interferometry.

نویسندگان

  • Ke Zhang
  • Li Tao
  • Wenkai Cheng
  • Jianhua Liu
  • Zhongping Chen
چکیده

A simple method based on air etalons of a transparent cavity is proposed to simultaneously measure the group refractive index and thickness of a transparent optical plate by spectral domain low coherence interferometry. In this method, only a single beam path is needed in contrast to the two beam paths, the reference and sample arms, of the conventional Michelson interferometer. An empty cavity is first constructed in the beam path by two glass plates. Then the transparent plate under test is inserted into the cavity, so that two air gaps are formed in the cavity. A beam of light of low coherence length is then transmitted through the cavity in the normal direction. Measurements of the reflected waves by the air gaps before and after the sample plate is put into the cavity allow us to determine the group refractive index (ng) and thickness (d) of the sample simultaneously. The relative precision of the results for d and ng are both approximately 7×10-4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement and comparison of the temperature-dependence of refractive index of water and Plexiglas phantoms by interferometry method for their use in optical calorimetry

In radiation calorimetry by using laser beams and interferometry setups, variations induced by dose absorption in phantom can be precisely measured. Dose absorption and the induced temperature change result in refractive index variation of the material. In order to be able to measure the low amount of absorbed dose in the phantom, temperature dependence of refractive index of the material must ...

متن کامل

Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness.

Interferometric range measurements using a wavelength-tunable source form the basis of several measurement techniques, including optical frequency domain reflectometry (OFDR), swept-source optical coherence tomography (SS-OCT), and frequency-modulated continuous wave (FMCW) lidar. We present a phase-sensitive and self-referenced approach to swept-source interferometry that yields absolute range...

متن کامل

Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics.

We propose and demonstrate novel methods that enable simultaneous measurements of the phase index, the group index, and the geometrical thickness of an optically transparent object by combining optical low-coherence interferometer and confocal optics. The low-coherence interferometer gives information relating the group index with the thickness, while the confocal optics allows access to the ph...

متن کامل

High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spect...

متن کامل

Measurement of the dispersion of air and of refractive index anomalies by wavelength-dependent nonlinear interferometry.

We carry out wavelength-dependent second harmonic interference experiments using thin films of an organic dye as nonlinear optical sources. While the measured difference of refractive index between the fundamental and second harmonic wavelengths follows the theoretical expectation for air in a wide spectral region, anomalous dispersion is observed when the second harmonic light lies in the abso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 53 31  شماره 

صفحات  -

تاریخ انتشار 2014